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Abstract 

Many applicative programming languages are based on the call-by-value lambda 
calculus. For these languages tools such as compilers, partial evaluators, and other 
transformation systems often make use of rewriting systems that incorporate some 
form of beta reduction. For purposes of automatic rewriting it is important to 
develop extensions of beta-value reduction and to develop methods for guarantee- 
ing termination. This paper describes an extension of beta-value reduction and 
a method based on abstract interpretation for controlling rewriting to guarantee 
termination. The main innovations are (1) the use of rearrangement rules in com- 
bination with beta-value reduction to increase the power of the rewriting system 
and (2) the definition of a non-standard interpretation of expressions, the generates 
relation, as a basis for designing terminating strategies for rewriting. 

1.     Introduction 

The original motivation for this work came from a project to compile programs 
by transformation to continuation-passing style [Steele 1976]. This program trans- 
formation in its simplest form tends to introduce extraneous lambda-applications. 
Instead of complicating the transformation to avoid introducing these lambda- 
applications it seemed preferable to use it in conjunction with a general purpose 
simplifier. The idea being that such a simplifier could be shared by many automatic 
program manipulation tools as well as being useful in interactive program manipu- 
lation systems. For example, such a simplifier can be used for optimizing programs 
built by combining many components, since inlining procedure calls (call unfold- 
ing) and many peep-hole optimizations are instances of beta-reduction. It could 
also serve as a tool for building semantics directed compilers and partial evaluators. 

Our simplifier is composed of a reduction system and a method for limiting 
application of reductions to insure termination. The basic reduction system can be 
used in combination with other control strategies and the analysis underlying our 
method for limiting reduction should work for variants of the reduction system. 

The target language for our simplifier is that of the lambda calculus [Baren- 
dregt 19S1].   The reduction system consists of the beta-value (beta-v) reduction 



rule together with two rearrangement rules designed to create additional sites for 
the beta rule. The beta-v rule is the restriction of the standard beta conversion 
rule to applications in which the operand is a value expression, e.g. a variable, con- 
stant, or lambda abstraction. Thus (Xx.f x)z is a beta-v reduction site (reducing 
to f z), while (Xx.f x)(g z) is a beta reduction site but not a beta-v reduction site. 
The beta-v rule corresponds to call-by-value semantics for a programming language 
and [Plotkin 1975] shows that this rule is adequate to evaluate closed expressions. 
However there are many programs that are equivalent under a wide class of obser- 
vations that cannot be proved equivalent in the lambda-v calculus. One example 
is the evaluated position context theorem: C[e] is equivalent to let{a; := e}C[x] 
where C is any expression with a unique hole occurring in a position that will be 
evaluated before any other serious computation takes place [Talcott 1989]. The 
rearrangement rules of our reduction system are corollaries of this theorem express- 
ing the fact that a let-binding (application of a lambda abstraction) occurring in 
the function position of an application or in the argument position of a applica- 
tion in which the function position contains a value can be moved outside of the 
application. Thus (let{/ := g z}Xx.f x)y rearranges to let{/ := g z}(Xx.f x)y 
and (Xx.f x)let{g := hz}Xy.gy rearranges to let{g := h z}(Xx.f x)(Xy.g y). Note 
that in both cases the expression before rearrangement has no beta-v reduction site, 
while the expression after rearrangement does have a beta-v reduction site. The 
rearrangement rules have the effect of moving expressions that intervene between 
a function and its argument to the outside. They define a canonical form in which 
functions are more likely to appear directly applied to their arguments. 

The rearrangement rules by themselves form a confluent, terminating system. 
They are not derivable in the beta-v calculus and hence our reduction system is 
more powerful than one based purely on beta-v reduction. 

[Moggi 1989] introduces the notion of computational monad as a framework 
for axiomatizing features of programming languages. Computational monads acco- 
modate a wide variety of language features including assignment, exceptions, and 
control abstractions. An extension of the lambda-v calculus called the lambda-c 
calculus is presented and shown to be valid in all computational monads. Our re- 
arrangement rules are derivable in the lambda-c calculus and thus are valid for any 
language whose semantics can be modeled as a computational monad. 

Writing a simplifier based on rules that include beta reduction is made difficult 
by the fact that unrestricted application of these rules can lead to infinite reduction 
sequences. Thus a strategy is needed for limiting beta reduction. One possible 
strategy is to fix a maximum number of reduction steps and perform reductions 
at random until this limit is reached. This strategy has the disadvantage that it 
treats all reduction steps the same way, rather than favoring those which simplify 
the expression over those which wander aimlessly. A second strategy is to beta 
reduce a lambda-application (Xx.e)v only if the bound variable x occurs free at 
most once in the body e or if the operand v is atomic.   Call this the reduces-size 



strategy. It guarantees that each beta reduction step decreases the size of the overall 
expression. This strategy can be overly conservative, since some expressions can be 
simplified only by first performing steps which increase the size of the expression, 
e.g. unfold and simplify. Note that neither of these strategies are confluent. This 
is obvious in the case of limiting the number of steps. To see this for the reduces 
size strategy we observe that for any lambda abstraction v (Xx.Xz.(Xy.y(y z))x)v 

reduces to (Xz.(Xy.y(y z))v) and to (Xx.Xz.x(x z))v. 

In this paper we describe a new strategy, statically limited rewriting, in which 
we compute a subset B of lambda-nodes in the initial expression such that any 
rewriting of that expression is guaranteed to terminate if beta reduction is restricted 
to descendants of nodes in B. (The descendant relation is the natural relation 
between nodes in an expression and nodes in the result of rewriting that expression.) 

We use a form of abstract interpretation (cf. [Abramsky and Hankin 1987]) 
to compute a suitable set B. First we define a non-standard interpretation of 
expressions, the generates relation xgen and the notion of a set of lambda nodes 
being an xgen-cycle. We then show that limiting reduction to descendants of a 
subset of lambda-nodes containing no xgen-cycle guarantees termination. Given an 
initial expression einit, xgen is a relation on reduction paths and pairs of lambda- 
nodes of einit defined as follows. Let a and b be lambda nodes in the initial 
expression and let q be a reduction sequence beginning with einit • We say that a 
generates b in the final step of q (and write xgen(g, a, 6)), if the final step of q is a 
beta-v reduction at a site whose operator is a descendant of a, and this reduction 
step entails (in the case a ^ b) an increase in the number of descendants of 6, or 
(in the case a = b) no decrease. We say a generates b along p if xgen(q,a,b) for 
some prefix q of p. A set of lambda nodes a0,...,an in the initial expression is an 
xgen-cycle if, roughly, there is a reduction sequence along which a,i generates a,-+i 

for i < n and an generates CLQ. 

For example consider the expression 

(X1x.xx)(X2x.xx) 

where the superscripts are used to associate names with lambda-nodes. Here there 
is a single reduction path along which 1 generates 2 and 2 generates 2. Limiting 
beta-reduction to descendants of node 1 guarantees termination (after one step!). 

As another example consider the expression 

(X'p.ppz^X'-x.X^y.XU.sxy) 

For this expression there are reduction paths along which 1 generates 2,3,4 and 
there are no other generates instances. Since there are no cycles all reduction 
sequences must terminate. Note that the reduces-size strategy mentioned earlier 

does not permit any reduction. 



In general xgen can be an infinite relation. Thus we want to find a finite, 
computable approximation that serves the same purpose. Using the methodology 
of abstract interpretation we say that a relation together with a corresponding 
notion of cycle is a safe approximation to xgen if it preserves the "no-cycles implies 
termination" property. As a first step we define a binary relation gen on lambda 
nodes that is a safe finite approximation of xgen using the usual notion of cycle 
induced by a binary relation, gen is the set of pairs a, b such that for some reduction 
sequence q beginning with einit, a generates b in the final step of q. 

We are still not done, as we have no general (uniformly terminating) algorithm 
for computing gen. Instead we define a safe computable approximation gen' of gen. 
The computation of gen' is based on computing upper bounds to the sets of nodes 
in the initial expression whose descendants can occupy certain kinds of positions 
(cf. control flow analysis [Shivers 1988] and closure analysis [Bondorf 1990]) and 
on computing an upper bound to the set of lambda nodes in the initial expression 
that are "doublers", i.e. have a descendant with more than one free occurrence of 
the bound variable in the body. Then gen' is roughly the set of all pairs (a, b) of 
lam nodes such that a is a doubler and there is some c such that a descendant of a 
is applied to a descendant c, and a descendant of b can become a subexpression of 
a descendant of c. 

In addition to safety we need to show that the approximations we have defined 
are non-trivial (note that the complete binary relation on lambda nodes is a safe 
but useless approximation). In both of the examples above xgen, gen, and our 
computable approximation gen' give rise to the same classification of cycles, and in 
particular gen and gen' are non-trivial. 

To summarize, given an expression to simplify, we proceed as follows: (i) com- 
pute gen'; (ii) choose a set B with no gen'-cycles; (iii) perform B-limited reduction 
until termination. Limited rewriting is in fact locally confluent. Thus we are free 
to apply the rules in whatever order we like; the final outcome will be the same. 

Although usually less conservative than the reduces-size strategy, the new strat- 
egy is sometimes still overly conservative. A less conservative alternative strat- 
egy, dynamically-limited rewriting, is the following. Instead of computing gen', we 
merely apply rules, accumulating a relation consisting of the pairs (a, b) such that a 
has generated b in some step of the rewriting so far, and disallowing any step which 
would cause this relation to contain a cycle. The alternative strategy guarantees 
termination but fails to preserve the confluence property. Nevertheless it may be 
the more appropriate strategy for a practical simplifier. 

Our static and dynamic strategies have an analogue in two approaches to partial 
evaluation. The static strategy corresponds to the use of binding time analyis and 
other static analyses performed to determine which applications should be left to 
run time and which are to be carried out at partial-evaluation time (cf. [Jones, 
Sestoft, and S0ndergaard 1989], and [Bondorf 1990]).    The dynamic strategy is 



more in the spirit of [Weise and Ruf 1990] where a call stack is maintained during 
partial evaluation and used for potential loop detection. 

The rest of this paper is organized as follows. In Section 2 syntax and notation 
are described. In Section 3 the rewrite system is presented. In Section 4 the relation 
gen is introduced, two forms of limited rewriting are defined and shown to terminate, 
and it is shown that one form of limited rewriting is confluent while the other is not. 
In Section 5 we show that any superset of the relation gen is a safe approximation. 
The approximation gen' is defined and proved safe. In Section 6 we discuss possible 

improvements and related work. 

2.    Syntax 

We use standard lambda calculus syntax [Barendregt 1981]. To define and 
analyze reduction rules it is convenient to represent expressions as labeled trees 
where each node of the tree corresponds to an occurrence of a subexpression. In 
this section we define the set of expressions and their representation as labeled trees. 

We assume given a countably infinite set Var of variables. Then the set Exp 
of expressions is the least set containing the variables and closed under lambda 
abstraction and application. That is, Exp is the least set satisfying the following 

equation. 
Exp = Var U A Var. Exp U Exp Exp 

We let re, x0,.. • range over Var and e, e0,... range over Exp. Expressions of the 
form x, Xx. e, and t\ e2 are called atomic expressions, abstractions, and applications, 
respectively. In an abstraction Arc. e, we call x the bound variable and e the body. 
In an application t\ e2, we call t\ the operator and e2 the operand. We let Vxp 
be the set Var U AVar. Exp of atomic expressions and abstractions; expressions in 
Vxp are called value expressions. We let v,v0,... range over Vxp. 

Free and bound variables are defined as usual and expressions identical up to 
alpha conversion we regard as indistinguishable. We write ei{rc := e2} for the 
result of substituting e2 for all free occurrences of re in d. Here we assume that 
alpha variants are chosen "hygienically" so that no trapping of free variables occurs. 
let{rr := e0}ei abbreviates (Arr.ei)e0. We adopt the usual conventions for disam- 
biguating written expressions, namely that (1) application.associates left, so that 
ei e2 e3 is (ei e2) e3, and (2) the body of an abstraction or let extends as far right 
as possible, so that Arc. tx e2 is Xx. (ei e2). Parentheses may be used to override the 

default grouping as in e0(ei e2) or (Arc.e0) e\. 

The tree structure of an expression is the abstract syntax tree modified to re- 
place each bound variables by a pointer to the node in the tree corresponding to 
its binding lambda (cf. [deBruijn 1972]). Each node in the tree structure of an ex- 
pression corresponds to a (unique) subexpression occurrence. Nodes are labeled by 



the constructor of the corresponding subexpression and edges are labeled by com- 
ponent selectors. A pointer is represented by a path (sequence of edges) relative to 
a top-level expression. To make this precise we define selectors, locations, and tags 
as follows. A selector is an element of the set {L,R, B}. Selectors name immediate 
subexpressions of an expression and label the edges of a tree. B names the body of 
an abstraction and L and R name the operator (left) and operand (right) compo- 
nents of an application. The set Loc of locations is the set of finite sequences with 
elements taken from the set of selectors. 

Loc = {L,R,B}* 

Locations represent paths or nodes of a tree and are used to name occurrences of 
subexpressions. The set Tag of tags is defined by 

Tag = {app, lam} U atx(Loc) 

Tags label nodes of a tree. A nodes tag identifies the constructor of the correspond- 
ing subexpression and in the case of a bound variable the location of its binding 
abstraction. 

We let c, c0,... range over {L, R, B}, /, /0,... range over Loc, and t, to,... range 
over Tag. □ is the empty sequence and selectors are considered to be singleton 
sequences. We write /./' for the concatenation of the sequences / and /' and l.c for 
the extension of / by c. If / = /0-^i then IQ is called a prefix of /. 

For simplicity we will assume outermost expressions are closed (by adding lamb- 
das if necessary). This is not a serious restriction, it just eliminates the need for a 
special case for free variables. For an outermost expression e, the locations, locs(e), 
the subexpression (e); at location / and its tag tag(e, /) are defined by induction on 
the construction of e as follows. 

(top)    a € locs(e) and (e)0 = e. — 

(app)    If / € locs(e) and (e)/ = eo t\ then tag(e,/) = app, /".L,/.R € locs(e), 
(e)z.L = eo, and (e);.R = tx. 

(lam)    If / (E locs(e) and (e)/ = Ax.eo then tag(e,/) = lam, /.B € locs(e), and 

(e)/.B = eo- 

(atx)    If / 6 locs(e), (e)/ = x, I' is a prefix of /, (e)// = Xx.e', and /' is the longest 
such prefix of / then tag(e, /) = atx(/*') 

Let / be a location in e. If / has tag lam (i.e. tag(e, /) = lam), we say / is a lam-node 
of e. If / has tag app we say / is a app-node of e. If / has tag atx(Z') we say that / 
is an atx-node bound at /' in e. 

As an example let e = Xf.Xx.fx. The tree written as a term would be 

lam(B : lam(B : app(L : atx(p),R : atx(ß)))) 



where component selectors are made explicit using key-word argument syntax. Fur- 

ther we have 

locs(e) = {n, B,B.B,B.B.L,B.B.R} 

tag(e,o) = lam        tag(e,B) = lam        tag(e,B.B) = app 

tag(e,B.B.L) = atx(o)        tag(e,B.B.R) = atx(ß) 

The following basic facts about the tree structure of an expression are simple con- 
sequences of the definitions and will be used implicitly. 

Lemma (tree.struc): 

(app)    If 1.1 E locs(e) or l.R G locs(e), then l.L G locs(e) and l.R G locs(e) and 

tag(e, I) = app. 

(lam)    If /.B G locs(e), then tag(e, /) = lam. 

(atx)    If / G locs(e) and tag(e, /) = atx(Z'), then tag(e, /') = lam and / = /'./0 for 

some /o. 

3.     Reduction 

An expression is simplified stepwise by applying one of three reduction rules. 

(1) (Ax. eo)ei e2 *->i (Ax. eo e2)ei provided x is not free in e2. 

(2) v((\x.e0)ei) H->2 (Ax.ue0)ei provided x is not free in v. 

(3) %J.^x-eo)v ^s eo{x := v} 

fThe stepwise reduction relation e —► e' is the congruence closure of the union 
of the three reduction rules viewed as binary relations. That is, e —► e' just if for 
some (r,/) G {1,2,3} x Loc, and some e0,ei we have that (e)/ = e0, e0 ^r ei, 
and e' is obtained from e by replacing the occurrence of e0 at / by ex. (Note that 
this is replacement, not substitution, and free variables of ex may be trapped by 
abstractions above /.)   Pairs (r, I) for r e  {1,2,3} and / € Loc are called rule 

applications. We write e -^-> e' to make the rule application explicit and we call / 
a site (in e) for application of rule r. 

A reduction sequence is a sequence of stepwise reductions. We let p, po, • • • •> 

5, go, • • -range over sequences of rule applications (r,/) and write e —► e' if p = 
(r- I) 

(ri,/i),...,(r„,/„) e = e0, e' = e„, andei_i   -^  e{ for 1 < i < n. 

Rule 3 is the beta-v reduction rule [Plotkin 1975]. Rules 1 and 2, called left- 
rearrangement and right-rearrangement respectively, would be superfluous in a sys- 
tem with unlimited beta-reduction and beta-expansion. However with only call- 
by-value beta-reduction, these rules can create sites for application of rule 3 which 



would not otherwise be created. Rearrangement merely rearranges the nodes in a 
tree, while beta-reduction may duplicate some subtrees and destroy others. The 
reduction rules preserve operational equivalence (cf. [Plotkin 75]). with respect to 
a call-by-value evaluator They are also valid in a wide range of extensions of the 
basic language including control abstractions [Talcott 1989] and memory operations 
[Mason and Talcott 1989a,b] and are valid for the Ac theory of [Moggi 1989]. 

Theorem (Rearrangement is canonical): The reduction system generated 
by the rearrangement rules (the reflexive transitive congruence closure of t-*1 U i—>2) 
is terminating and confluent. Thus every expression has a unique normal form with 
respect to rearrangement. 

Proof :     What we must show is 

(termination) Every sequence of rearrangements terminates. 

(confluence) If eo, t\ are two distinct expressions that can be reached from an 
expression e by sequences of rearrangements then there is an expression e2 that 
can be reached from both eo and e\ by further sequences of rearrangements. 

To prove termination, define the depth of a node as the number of lam's it is 
below. In each rearrangement e —> e', the depth of the app node at the rearrange- 
ment site in e, and the depths of each node in one of its subtrees, increases by 1, 
while the depths of all other nodes remain constant. So the sum of the depths of 
all nodes increases in each step. But this sum is bounded by n x m, where n is 
the number of nodes, and m the number of lam nodes, in t\. So the sequence of 
rearrangements must be finite. 

Since we have termination, to prove confluence it suffices to prove local conflu- 
ence [Huet 1977]: 

(local confluence) If eo, t\ are two distinct expressions that can be reached from an 
expression e by a one-step rearrangement then there is an expression e2 that 
can be reached from both eo and e\ by further sequences of rearrangements. 

Instead of proving local confluence at this point we merely note that local 
confluence for rearrangement is a special case of local confluence of limited rewriting 
proved in the next section. D 

In order to analyze properties of reduction sequences, we need to be able to 
trace the ancestry of nodes in an expression resulting from applying a sequence of 
reductions. For the direct application of a reduction rule e t—»r e' there is a natural 
predecessor in e of each node in e'. Consider an application of rule 1. Making the 
relevant tree structure explicit we have 

e = app1(app2(lam3(a;,eo),e1),e2) ^i app2(lam3(.T, app^eo, e2), e:) = e'. 

The predecessor of a node in the subexpression e0, e\, or e2 of e' is the corresponding 
node the subexpression eo, ei, or e2 of e. The predecessors of the remaining nodes 



of e' are given by the superscripts. The predecessor function for applications of rule 
2 or rule 3 is analogous. The precise definition is given below. For beta reduction 
this definition coincides with that of [Wadsworth 1978]. 

Definition (predecessor):      Fore -^-» e' and/' e locs(e') we define pred(e,(r, /),/'), 
the(r, Z)-predecessorof /'in e, as follows. If / is not a prefix of I' then pred(e, (r, Z), /') = 
V. Otherwise pred is given by the following tables. 

(1)    If r = 1 and (e)/ = (Ax.e0) Ci e2 then pred(e, (1, /), l') = l is given by 

/' I conditions 

z l.L 
Z.L Z.L.L 
l.L.B I 
l.R.ll Z.L.R./i h € locs(ei) 

Z.L.B.L /o Z.L.L.B.Zo Z0 € locs(e0) 
Z.L.B.R ■k Z.R.Z2 Z2 G locs(e2) 

(2) if r = 2, (c)i =v((Aar.e0)ei) then pred(e, (2,Z), Z') = Z is given by 

/' Z       conditions 

I l.R 
l.L Z.R.L 
Z.L.B Z 
Z.L.B.L.Zt, Z.L.Zt, lv £ locs(u) 
Z.L.B.R.Zo Z.R.L.B.Zo Z0 € locs(e0) 
Z.R.Zx Z.R.R.Zx h G locs(ei) 

(3) if r = 3, (e)/ = (Ax.e0)u then pred(e, (3, Z), /') = Z is given by 

I' l conditions   

Z.Zo        Z.L.B./o        Z0 e locs(eo); tag(e,Z.L.B.Z0) ^ atx(Z.L) 
Z.Zo-Zv    Z.R.ZV lv e locs(ü); tag(e,Z.L.B.Z0) = atx(Z.L) 

The following lemma is a direct consequence of the definitions. It expresses the key 
structural properties of reductions and points out the crucial distinction between 

rearrangements and beta reduction. 

Lemma (pred): The predecessor function is 1-1 and onto except in the case of 
a rule 3 reduction where the application and abstraction nodes of the reduction site 
have no successors and nodes of the value may have zero or more successors. 
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The ancestor function anc generalizes the predecessor function to sequences of 
reduction steps mapping locations in the final expression of a reduction sequence to 
locations in the initial expression from which they derive. 

Definition (ancestor): If e -^-> ep and / e locs(ep) then ance(p,/), the p- 
ancestor in e of /, is defined by induction on the length of p as follows. 

(mt)    ance(a, /) = / 

(nmt)    If p = p',(r, /') and e -?-* e' then ance(p,/) = ance(p',pred(e', (r,/'))). 

If ance(p, 1) = a then we say that / is a p-descendant of a. 

The following lemma shows that, via the ancestor relation, tag types and bind- 
ing relations are preserved by reduction. 

Lemma (tag preservation): Let e -?-* e', /' € locs(e'), and ance(p,/') = /. 
If tag(e,/) € {app,lam} then tage(p,/') = tag(e,/). If tag(e,/) = atx(/0) then 
tage(p,/') = atx(/o) where 1'0 is the (unique) location in e' such that l'Q is a prefix 
of /' and ance(p, 1'0) = IQ. 

Proof : An easy induction on the length of the reduction sequence. The prefix 
requirement in the case of bound-variable tags distinguishes between copies of the 
value substituted into the body of a lambda expression in rule 3. D 

4.     Limited rewriting 

In this section the relation gen is introduced, two forms of limited rewriting are 
defined and shown to terminate, and it is shown that one form of limited rewriting 
is confluent while the other is not. Finally we discuss limited rewriting as a basis 
for a practical rewrite-control strategy. 

To simplify the definitions, for the remainder of the paper we fix an initial 
expression einit. A will denote the set of locations in einit (A = Iöc"s(einit)) 
and a, 6, a0)... will range over A. Aiam will denote the set of lam locations in 
^init (Aiam = {/ G A | tag(einit) = lam}). Having fixed einit we specialize the 
ancestor functions to einit and omit the subscript. We let Rseq be the set of rule 

application sequences starting from einit, that is, sequences p such that einit —> e 
for some e. For brevity, in situations where an expression is required a sequence p 

in Rseq may be used to denote the (unique) e such that einit —^-> e. In particular 
we will write tag(p, /) for tag(e, /). 

4.1.    The gen relation and limited rewriting 

We begin by defining the generates relations xgen on Rseq x Aiam x Aiam and 
gen on Aiu, x Aiam. 
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Let a and b be lam nodes in Aiam and let q be a rule-application sequence in 
Rseq. We say that a generates b in the final step of q (and write xgen(g,a, &)), 
if the final step of q is a rule-3 reduction at a site whose operator is a descendant 
of a, and this final step entails (in the case a ^ b) an increase in the number of 
descendants of 6, or (in the case a = b) no decrease. 

Definition (xgen):      xgen(g,a,6) just if a, 6 € Aiam, 9 € Rseq, and there are 
p, e,e',l such that q = p.(3,Z) and (i-iii) hold. 

(i)    einit —► e —> e 

(ii)    anc(p, Z.L) = a 

(iii)    n6 < n'b if a ^ b and n& < n'6 if a = 6; where n6 is the number of locations /' 
in e such that anc(p, /') = 6 and n'6 is the number of locations /' in e' such that 

anc(p.(3,Z),Z') = Z>. 

We say that a generates b (and write gen(a, b)) if a generates 6 in some step of 

some reduction sequence beginning with einit • 

Definition (gen):      gen(a, b) just if there is some q € Rseq for which xgen(g, a, b). 

We now define two forms of limited rewriting. 

Definition (R-limited rewriting): Given a relation R on Aiam x Aiam, we 
define an R-limited rewriting to be any reduction sequence einit —► ei —► • • • 
starting with einit, and satisfying the restriction that a step in which some node a 

generates some node b is allowed only if (a, b) e R. That is, if einit —► e —► e is 
an initial segment of such a sequence and xgen(p.(3, /), a, b), then (a, b) € R. 

Definition (B-limited rewriting): Given a subset B of Aiam we define a B- 
limited rewriting to be any reduction sequence einit —* £\ —► • • • starting with 
einit, and satisfying the restriction that a beta reduction step is allowed only if the 

operator is a descendant of a location in B. Thus if einit —* e —^ e' is an initial 
segment of such a sequence then anc(p, Z.L) € B. 

4.2.    Termination of limited rewriting 

In this subsection we show that under suitable conditions each of the two forms 
of limited rewriting is guaranteed to terminate. We say that a binary relation R on 
a set A" has no cycles if there is no sequence x0,. ■., xn of elements of X such that 

x0 = xn and R(xi,Xi+i) for 0 < i < n. 

Theorem (R-limited rewriting terminates): Let R be a relation on Aiam x 
Aiam with no cycles. Then any R-limited rewriting must be finite. 
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Proof : Let einit —> £\ —► ■ ■ ■ be an R-limited rewriting, and let p be the 
corresponding (possibly infinite) sequence of (r,l) pairs. Let Rp be the set of (a, b) 
pairs such that a generates b in some step of this rewriting, that is, 

Rp = {(a, b) e Aiam x Aiam | (3g, gi <E Rseq)(p = q.qi A   xgen(g, a, 6))}. 

Since R has no cycles, neither does Rp, and we can linearly order the elements of 
Aiam as a row a\,... ,an such that during this rewriting each element of the row 
generates only elements to the right of that element. That is, for a;-, a^ € Aiam and 
q a finite prefix of p, if xgen(g, a.j, ajt) then j < k. 

Define the rearrangement potential for an expression e to be the number of steps 
in the longest sequence of rearrangements beginning with e. Since rearrangement is 
terminating the rearrangement potential is always a natural number, and decreases 
with any rearrangement step. 

For each expression ti in einit —> t\ —> ..., let r,- be the (n + l)-tuple of 
natural numbers whose first n components are the numbers of descendants in e; of 
ai,..., an, respectively, and whose last component is the rearrangement potential 
of t{. We show that the sequence of tuples Tinit, ri,... is in lexicographically 
decreasing order. Hence both the sequence rinit, T\,... and the sequence einit —► 
ei —► ... must be finite. 

Suppose e,- —► e,-+i is a rearrangement step. Since for rearrangements the 
predecessor function is one-to-one and onto, r; and r,+1 are equal in their first n 
components. Since the rearrangement potential decreases in a rearrangement step, 
the last component of r,-+i is less than that of r;. Suppose e,- —► e,-+i is a beta-value 
reduction step. Then the operator at the reduction site must be a descendant of a 
node cij in Aiam- The jth component of T^+I must be less than that of r^, and no 
preceding component of r;+1 can be greater than the corresponding component of 
Ti. Otherwise, for q the prefix of p corresponding to einit —► ... —> ej+i and k the 
offending position at or before position j, we would have xgen(g,a,j:,a/J^violating 
the condition by which the elements a\,..., an were ordered. D 

BeginNote 

From the proof we see that (R-limited rewriting terminates) holds for any 
extension of the beta-v rule by the addition of a terminating collection of rules with 
the property that application of one of these rules never increases the number of 
descendants of a node. 

EndNote 

Corollary (B-limited rewriting terminates): Let B be a subset of Aiam such 
that the restriction genB of gen to B has no cycles. Then any B-limited rewriting 
must be finite. 

Proof : Any B-limited rewriting is genB-limited (since if there is a step which 
makes a rewriting not genB-limited, then the step must be a beta reduction step 
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and the operator at the reduction site must be a descendant of an element of B, so 
the rewriting is not B-limited.) Since genB has no cycles, any B-limited rewriting 
must be finite by the preceding theorem. D 

4.3.    Confluence of limited rewriting 

In the previous section we showed that for certain subsets B of Aiam, B-limited 
rewriting terminates. In this section we show that for any subset B of Aiam, B- 
limited rewriting is locally confluent. R-limited rewriting, however, is not confluent. 

Theorem (B-limited rewriting is locally confluent):      If B is any subset of 
P (rkjk) 

Aiam then B-limited rewriting is locally confluent.   That is, if einit —► e   —► 
ek is a B-limited rewriting for k € {a,ß} then we can find pk and e' such that 

einit -*-+ e (r-^} ek -^ e' is a B-limited rewriting for k € {a,ß}. 

Proof : Assume einit -*-> e ("^ e* is a B-limited rewriting for k € {<*, ß}. We 

want to find pk and e' such that einit -^ e ^^ ek -^ e is a B-limited rewriting 
for k e {a,ß}. Note that if I € locs(e) is a site for B application of rule 3 and V is 
a descendant of I in ek then /' is a site for B application of rule 3 in ek. If la is not 
a prefix of Iß and Iß is not a prefix of la then la is a site for rule ra in eß, Iß is a site 
for rule Tß in ea, and applying the rules in either order gives the same result (call 

it e'). Thus emit -^ e (^V ek 
(^>() e' is a B-limited rewriting for k £ {a,ß} 

and k the opposite of k. Thus without loss of generality we may assume that la is 
a prefix of Iß and consider three cases according to whether ra is 1, 2, or 3. 

Case 1: Let (e)ia = (Xx.e0) e.\ e2. If //? is a location in e0, eu or e2 then 
application of the two rules commutes. 

(re,,/«) (^-/^)     , , (r^,/^) (ra,/„)     , 
e   -^-?   ea   —»   e     and    e   —►   e^   —>   e 

where pred(ea, /*) = /# and we are done. Otherwise (by the form of the rules) we 

have Iß — la.L and rß = 2 or rß = 3. 

Case 1.2:      ei = (Ay.e3)e4 

(Ax.eo) t\ e2 H->I (Aa;.e0 e2) t\ 

= (Ax.e0e2)((Ay.e3)e4) >->2 (Ay.(A.x\e0 e2) e3) e4 

(2 L) 
(A.r.e0)((Ay.e3)e4)e2 -U (Ay.(A.T.e0) e3) e4 e2 

i-^! (Ay.(Aa;.eo)e3 e2)e4   —»   (Ay.(A.T.e0 e2) e3) e4 
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Case 1.3:      t\ = v\ <G Vxp 

(Xx.e0)vi e2 i-n (Ax.e0 e2)ui H-*3 e0{x := vi} e2 

/-\        \ (3'L)      / 1 (Ax.e0) vi e2 —> e0 |x := v\} e2 

Case 2: Let (e);Q = v ((Ax.eo) ei). Again if Iß is a location in v, eo, or ei 
then application of the two rules commutes (modulo relocation) and we are done. 
Otherwise (by the form of the rules) we have Iß = /a.R and rß = 2orrß = 3. 

Case 2.2:      t\ =(Ay.e2)e3 

v((Ax.eo)ei) 1—>2 (Ax.ueo)ei 

= (Ax.ue0)((Ay.e2)e3) t->2 (Ay.(Ax.u e0)e2)e3 

(9 L) 
u((Ax.e0)((Ay.e2)e3)) -^-» u((Ay.(Ax.e0)e2)e3) 

i->2 (Ay.t>((Ax.e0)e2))e3    -1—►   (Ay.(Ax.u e0)e2)e3 

Case 2.3:      ei = v\ € Vxp 

f ((Ax.eo)ui) |—>2 (Ax.f e0)fi ^3 u eo{x := Vi}        '/, since x g FV(u) 

•y((Ax.e0)fi) i-»3 w(eo{x := vi}) 

Case 3:      We use the following standard lemmas. 

(1)    e —> e   =4> e{x := v) —► e {x := v) 

(ii)    v —'-* v' => e{x := v}    ' '   ^* ' ' n  e{x := (/} where /1,... ,/n is a list of the 
locations of free occurrences of x in e. 

Let (e);a = Ax.eo v. Then /^ must be a location in eo or v and the result follows 
from the lemmas (i) and (ii) respectively. D 

Corollary (B-limited rewriting is canonical): Each expression einit has a 
unique simplified form with respect to B-limited rewriting for any B C Aiam svich 
that genB contains no cycles. 

BeginNote 

One might suppose that R-limited rewriting is canonical for any R C Aiam x 
Aiam with no cycles. This conjecture is false. For example, take 

einit=(\1z.(\2x.xx)(\3p.z))(\4w.w) 

and R = {(2,3)}. There are two choices for the first step of R-limited reduction, 
and the resulting expressions have no common reachable expression. 
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EndNote 

4.4.     Strategies for controlling rewriting 

The results of this section suggest the following strategies for controlling rewrit- 
ing. 

(1: Statically-limited) Compute gen, choose a maximal subset B of Aiam with no 
gen-cycles, and perform B-limited rewriting until termination. 

(2: Dynamically-limited) Instead of computing gen, merely apply rules, accumulating 
information about the xgen relation as the set of pairs (a, 6) such that a has 
generated b in some step of the rewriting so far, and disallowing any step which 
would cause this relation to contain a cycle. Since any reduction sequence gen- 
erated by this method is R-limited for some R with no cycles, no infinite 
reduction sequence can be generated. 

The first strategy has some obvious advantages. First, it is fully specified in the 
sense that it terminates with the same final result regardless of the order in which 
rules are applied. This means that it is simpler to analyze. Another advantage of 
strategy (1) is that it does not require computing generation pairs (a, b) at each 
beta reduction step. In practice, since we have no algorithm for computing gen, 
strategy (1) will be implemented using some safe approximation gen' of gen. One 
such approximation is described in the next section. 

Let us say that one rewrite-control strategy is always as powerful as another if 
every reduction sequence allowed by the first is allowed by the second. Otherwise 
we say that the first is sometimes less powerful than the second (and the second 
sometimes more powerful than the first). It is interesting to compare the power 
of strategies (1) and (2) with that of the reduces-size strategy mentioned in the 
introduction. 

Both of the strategies (1) and (2) are sometimes more powerful than the 
reduces-size strategy (for example consider the second example given in the intro- 
duction). Reduces-size rewriting is identical with R-limited rewriting with R the 
empty relation. So strategy (2) is always as powerful as the reduces-size strategy. 

Strategy (1) is sometimes less powerful than the reduces-size strategy. For 
example if the initial expression is 

let1!/ := A3y.let4{z :=y}let5{u> := x}wio}f X2z.f 

then gen includes the cycle 4 —> 4. (To see this, reduce the application of 1; then 
reduce leftmost applications of 3, 5, and 4. Node 4 generates itself in the last step.) 
This means that our choice of B for statically-limited rewriting cannot include 
node 4. Thus, statically-limited rewriting will not allow reduction of 4-applications. 
However the reduces-size strategy allows reduction of a- 4-application as the first 
step. 
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5.     Estimating the gen relation 

We defined a relation gen on Aiam the set of lambda nodes of a given initial 
expression einit and showed that if a subset B of Aiam contains no gen-cycles 
then B-limited rewriting from einit terminates. As it stands, this result is of 
little use, since we have no algorithm to compute the relation gen for an arbitrary 
expression einit • Instead we will define a computable relation gen' which is a safe 
approximation to gen. We say that gen' is a safe approximation to gen if whenever 
a subset B of Aiam has no gen' cycles then it has no gen cycles. Thus we can safely 
use gen' to choose the subset B for limited rewriting. 

Lemma (gen.safe):      If gen' is a relation on Aiam x Aiam that is a superset of 
gen (gen(a, b) => gen'(a, b)) then gen' is a safe approximation of gen. 

In this section we define a computable relation gen' that is a superset of gen 
for any given einit. The development for our algorithm for calculating gen' was 
based on the following intuitions. 

(1) Nodes (atomic expression nodes, application nodes, and lambda nodes) are 
considered to maintain their identity as reduction proceeds. 

(2) Each application node has two hooks, and each lambda node one hook, to 
which the root nodes of subexpressions are attached. During reduction the 
node attached to a given hook may be removed and a new node attached. 

(3) One can simultaneously determine for every hook an upper bound on the set 
of lam or atx nodes which can ever become attached to that hook, in the 
following way. We know the node initially attached to each hook. There are 
only two ways a given hook can get a new node: (a) when a lambda-application 
app1(lam2(el),e2) is reduced, each hook within lam2(el) to which a variable- 
node bound by lam2 is attached gets (a copy of) the node currently attached to 
the right-hand hook of appr (b) when the above-mentioned reduction occurs, 
the hook to which the node app1 is attached, gets the node attached to the 
hook of lam2. To simultaneously build the upper-bound set of nodes for every 
hook, we proceed as follows. Each node-set initially contains zero or one node. 
If there is an app node whose left hook node-set contains lam1 and whose right 
hook node-set contains node n then add n to the node-set of each hook whose 
node-set contains an atx node bound by lam', and to the node-set of the hook 
to which this app is originally attached, add all elements in the node-set of the 
hook of lam'. 

(4) By analogous methods we can determine upper bounds for the set of lam nodes 
which are "doublers" (a lam node with some descendent that contains more 
than one occurrence of the bound variable in the body) and for the set of pairs 
(ni,ri2) of atx or lam nodes such that node ri2 can occupy a position at or 
below rt\ (so that attaching ni to a given hook "can bring" node ri2 along with 
it). Finally we compute gen' as the set of all pairs (ni^no) of lam nodes such 



17 

that rii is a doubler and na is in the node-set of the left hook of an app node 
whose right hook node set includes a node which can bring n2. 

To compute gen' we first define auxiliary relations get, doubler, and canbring 
expressing the key features in the clauses of the definition of gen and show that 
gen is approximated by a simple combination of these relations. We then define 
computable relations get', doubler', and canbring' that are safe approximations 
(supersets) of get, doubler, and canbring respectively, gen' is then defined to be 
the corresponding combination of the approximations to the auxiliary relations. 

As motivation we begin with a lemma (gen.char) characterizing gen. This 
lemma states that gen(a, b) holds just if there is some rewriting e of einit with 
a site for application of the beta-v rule such that the ancestor of the abstraction 
component is a, the bound variable of that abstraction occurs at least twice in the 
body, and there is a location within the value component with ancestor b. 

Lemma (gen.char):      gen(a, b) just if a, b € Aiam and there are p, /, e, e', Z0, h, h 

such that 

(1)    einit —► e —► e , 

(ii)    anc(p, Z.L) = a and anc(p, l.R.lo) = b, 

(iii)    7i # Z2 and tag(p, Z.L.Zj) = tag(p, Z.L./i) = atx(Z.L). 

Proof :      The if direction is trivial. For the onlyif direction, assume gen(a, b) and 

let p, I, e, e' be such that einit -?-* e —^ e', anc(p, Z.L) = a, and (in the case a = b) 
nb < n'b or (in the case a ^ b) nb < n'b; where nb is the number of locations /' 
in e such that anc(p, /') = b and n'b is the number of locations /' in e' such that 
anc(p,Z') = b. If there is no Z0 such that anc(p, /.R./0) = b or if tag(p,/.L./i) = 
tag(p,Z.L.Z2) = atx(Z.L) implies h = /2 then (since the subexpression at b is not a 
variable) b ^ a implies n& = n'b and b = a implies nb > n'b. Thus we can find /0, h, h 
such that anc(p,/.RJ0) = b, h ^ l2, and tag(p, l.L.h) = tag(p, Z.L./2) = atx(Z.L). D 

get is a relation on A x {L, R, B} X A such that for locations a, b in the initial 
expression, get(a, c, b) means that there is a rewriting p of einit such that there is 
a p-descendant of a with a p-descendant of b immediately below it along a c edge. 

Definition (get): get(a,c,6) just if a, b e A, c € {L,R,.B}, and there is some 

p,l,e such that e^it -^-* e, anc(p,Z) = a, and anc(p,Z.c) = b. 

canbring is a relation on A x A such that if canbring(ax,a2) then ax and a2 

are lam-nodes and there is a rewriting p of einit such that there is a p-descendant 
of ai which is in a "potential operand" location (a location ending with R or B), 

and which has p-descendant of a2 below it. 

Definition (canbring): Forai,a2 € A canbring(ai,a2) just if tag(einit,«i) = 
tag(einit,02) = lam and there are p, Z, c, Z0, h such that c € {R,B} such that 

anc(p, l.c) = o-i and anc(p, Z.c.Zo) = «2- 
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For a node a in the initial expression, doubler(a) means that a is a lam-node 
and that there is a rewriting p from einit such that a p-descendant of a has more 
than one occurrence of its bound variable in its body. 

Definition (doubler):      For a G A, doubler(a) just if there are p,l,h,h such 
that l\ j= I2, anc(p,/) = a, tag(p,/) = lam, tag(p, l.li) = tag(p, I.I2) = atx(Z). 

Approximations to gen can be factored into approximations of get, canbring, 
and doubler using the following theorem. 

Theorem (gen.approx):      If gen(a, b) then doubler(a) and there are aQ,a\ € A 
such that get(ao,L,a), get(ao, R,a,\), and canbring(ai,6). 

Proof :     A direct consequence of (gen.char). D 

5.1.    Approximating the factors of gen 

The approximations get', canbring', and doubler' are defined inductively as 
the least relations satisfying certain conditions (sets of clauses). The clauses were 
determined systematically by seeing what was needed to carry through a proof 
of safeness by induction on the rewriting p that occurs in the definitions of the 
corresponding exact relations. The base case is p = o and the corresponding clause 
was obtained by instantiating the formula defining the exact relation with p = o. For 
p non-empty we consider the last rule applied, assume safeness for shorter rewritings, 
and analyze the possible relations between the location of the rule application and 
the locations mentioned in the definition of the exact relation. The labels of the 
clauses in the definitions of get', canbring', and doubler' below reflect this case 
analysis which is given in more detail in the proofs of safeness. For the definitions we 
need one additional auxiliary relation isval on A which is true for value locations 
in the initial expression. 

Definition (isval):      isval(a) <£> (einit)a € Vxp 

Lemma (isval):      isval(a) just if tag(einit,a) = lam or tag(einit,ö)~= atx(6) 
for some b in Aiam. 

5.1.1.    Approximating get 

Definition (getp):      get' is the least relation on A x {L, R, B} X A such that 

(mt)     get'(a,c, a.c) 

(1.1) get'(a,c,ao) A get'(ao,L,6) A get'(fe,L,ai) A tag(o,a!) = lam 

=> get'(a,c,6) 

(1.2) get'(6,L,ao) A get'(ao,L,a) A tag(a,a) = lam =4» get'(a,B,6) 

(1.3) get'(a,L,a0) A get'(a0,L,ai) A get'(ai,B,b) =*> get'(a, L,6) 

(2.1)      get'(o, c,a0) A get'(a0,R, b) A get'(a0, L,aj) A isval(ai) 
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A get'(6,L,a2) A tag(o,a2) = lam =>• get'(a,c,6) 

(2.2) get'(6,L,a0) A isval(a0) A get'(6,R,ai) A get'(ai,L,a) A tag(D,a) = lam 

=> get'(a,B,6) 

(2.3) get'(a,R,a0) A get'(a0, L,ai) A get'(auB,b) A get'(a,L,a2) A isval(a2) 

=> get'(a,R,6) 

(3.1) get'(a,c,a0) A get'(a0, L,ai) A get'(ai,B,6) A get'(a0, R,a2) A isval(a2) 

=> get'(a,c,&) 

(3.2) get'(a,c,a0) A get'(a0,R,&) A isval(fe) A get'(a0, L,ai) A get'^B,^) 

A tag(o,a2) = atx(ai) => get'(a,c,6) 

(3.3) get'(a0,R,6) A isval(fc) A get'(o0, L,aj) A get'(a,c,a2) 

A tag(a,a2) = atx(aa) => get'(a,c,6) 

Theorem (getp):      get(a,c,6) =4> get'(a,c,6) 

Proof : We show by induction on p that anc(p, /) = a and anc(p, /.c) = b implies 
get'(a,c, 6).   If p is empty the result follows from clause (mt) of the definition of 

get'. Assume p = p0,(r,Z0) and einit -^ e ^ e'. If r = 1 there are three cases 
of interest: (1.1) l.c = l0; (1.2) I = k-L A c = B; and (1.3) / = Z0.L.B A c = L. 
If r = 2 there are three cases of interest: (2.1) l.c = /0; (2.2) / = /0-L A c = B; 
and (2.3) I - l0-h.B A c = R. If r = 3 there are three cases of interest: (3.1) 
l.c = l0 A tag(po,/o-L.B) ^ atx(Z0.L); (3.2) l.c = /0 A tag(p0, Z0.L.B) = atx(/0.L); 
and (3.3) I = lo-h A tag(p0, Z0.L.B./i.c) = atx(/0.L) A tag(p0,/0.L.B) # atx(/0.L). In 
each of these cases we use the corresponding clause in the definition of gen'. For all of 
the remaining possible positions of / relative to /0 we have anc(p, /) = anc(p0, V) = a 
and anc(p,Z.c) = anc(p0,Z'.c) = b where /' = pred(e, (r,/0), /)■ Hence bY induction 

we are done. D 

5.1.2.    Approximating canbring 

The definition of canbring is in fact too restrictive to allow us to express the 
conditions we need in constructing the approximations canbring' and doubler'. 
This is because we want to express not only the possibility of one lambda-node 
appearing below another, but also the possibility of a variable-node appearing be- 
low a lambda-node. To solve this problem we define a larger relation canbring*. 
canbring*(ai,o2) holds if either canbring(ai,a2) or ax is a value node, a2 is an 
atx-node, and there is a rewriting p of einit such that there is a p-descendant of a2 

which has a p-descendant of a\ between it and its binding location. 

Definition (canbring*):      For aua2 € A canbring(a1,a2)* just if canbring(ai,a2) 
or isval(ai) and there are p, /, c, Z0, h such that c <E {R, B} and anc(p,/./0.c) = o.:, 

anc(p l.lo.c.li) =a2, and tag(p, a2) = atx(Z). 
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Lemma (canbring*):      canbring(ai, 02) => canbring*(01,02). 

Definition (canbringp):      canbring' is the least relation on A x A such that 

(mt.i)       a\ = l.c A c 6 {R,B} A ao = 01-/2 A tag(o,ai) = tag(o,a-i) = lam 

=>■ canbring'(ai,a2) 

(mt.ii)     ai = l.l\.c A isval(ai) A c € {R, B} A a2 = 01-/2 A tag(o, a2) = atx(/) 

=3> canbring'(ai,02) 

(3) get'(ao,R,o4) A get'(a0,L,O3) A canbring'(a4,a2) A canbring'(oi,a5) 

A tag(o, ai) = lam A tag(o,05) = atx(a3) => canbring'(ai, 02) 

Theorem (canbringp):      canbring(ai,a2) =» canbring'(ai,02) 

Proof: We will show that canbring* (ai,a2) implies canbring'(ai, «2)- For this, 
we show by induction on p that 

(i)    tag(o, ai) = tag(o, 02) = lam, anc(p, l.c) = aj, anc(p, I.C.I2) = 02, and c G 
{R, B} implies canbring'(ai,02). 

(ii)    anc(p,/./i.c) = ai, isval(ai), anc(p,/./1.C./2) = a2, tag(p, I.I1.C.I2) = atx(Z), 
and c € {R, B} implies canbring'(ai,02). 

If p is empty the result follows from clauses (mt.i,ii) of the definition of canbring'. 

Assume p = po,(r,lo) and einit —^* e —-> e'. If r G {1,2} then for all allowed 
positions of / relative to IQ the result follows by induction. If r = 3 then the only 
interesting case is pred(e, (r, /0), l.c) — /o-L.B./i and pred(e, (r, /o), l.c.l-i) = /o.R./2 

for some /'i,/2. Then (i) and (ii) both follow from clause (3) of the definition of 
canbring'. □ 

5.1.3.    Approximating doubler   

Definition (doublerp):      doubler' is the least relation on A such that 

(mt)     I] / I2 A tag(o,a.B./i) = tag(o, 0.B./2) = atx(o) => doubler'(a) 

(3)        doubler'(ai) A get'(ao, L,oi) A get'(oo, R, 02) A canbring'(o2, 03) 

A tag(o,03) = atx(o) => doubler'(o) 

Theorem (doublerp):      doubler(o) =>■ doubler'(o) 

Proof: We show by induction on p that anc(p, /) = a, l\ 7^/2, andtag(p,/.B./i) = 
tag(p, I.B.I2) = atx(/) implies doubler'(a). Assume l\ ^ I2, anc(p,/) = a and 
tag(p, l.B.li) = tag(p,/.B./2) = atx(/).   If p is empty the result follows from the 

clause (mt) of the definition of doubler'. Assume p = Po, (r, /o) and einit —^ e —'-^ 
e'. Ifpred(e,(r,/0),/.B./i) ^ pred(e, (?•./0),/.B./2) then anc(p,/), (p0,pred(e, (r, /0), /)), 
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and a are equal. Also tag(p0,pred(e, (r./0),/.B./.,•)), atx(pred(e, (r,/0),/)), and 
tag(p, l.B.lj) are equal and the result follows by induction. Thus we may assume 
r = 3, / is a proper prefix of/0,pred(e,(r,/0), Z.B./i) = pred(e, (r, /„), /.B./2.) = k.R.l' 
for some /', and the result follows from clause (3) of the definition of doubler'. D 

5.2. Approximating gen 

Definition (genp):     gen'(a, b) just if a, b € Aiam and for some a0,ai € A 

doubler'(a) A get'(a0,L,a) A get'(a0,R,ai) A canbring'(a2, b). 

Theorem (genp):      gen(a,6) =4> gen'(a, 6) 

Proof :     An easy consequence of (gen.char). D 

5.3. Usefulness of the approximation 

We would like to think of the computable definition of gen' as a program 
satisfying a two-part specification: (1) gen' is safe; (2) gen' is useful. Formalizing 
notions of safety is well-understood, but formalizing notions of usefulness is an open 
problem. At the present we have only some miscellaneous criteria, described in this 
section. 

One criterion of usefulness is non-triviality: the requirement that there ex- 
ists some expression einit for which gen' is smaller than the trivial approximation 
Aiam x Aiam- As mentioned earlier, our definition of gen' satisfies this criterion. 

Another criterion is to require that the program for gen' compute gen exactly 
on some test suite of interesting expressions. A finite test suite is hardly a specifi- 
cation, since a trivial program modified to handle the test suite examples as special 
cases would satisfy the specification. However a good test suite can be useful in 
identifying problems with the approximation. 

Another possibility would be to require that gen' = gen for certain infinite sets 
of expressions. For example, our definition of gen' agrees with gen on expressions 
that contain no doublers initially. 

Lemma (no.doubler): If einit contains no doublers then gen and gen' are 
empty. 

Proof : Assume tag(einit, h) = tag(einit, h) = atx(/) implies h = U for 
h,l2J € locs(einit). By safeness it suffices to show that gen' is empty. Show 
by contradiction that -.doubler'(a) for a G Aiam- Choose a € Aiam with miminal 
derivation of doubler'(a). The last rule applied cannot be (mt) by hypothesis. The 
last rule applied cannot be (3) by minimality. D 
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6.     Towards a general purpose simplifier 

The ultimate goal of this work is to develop simplifiers which are of practical 
use as as automatic program manipulation tools. The work presented here pro- 
vides a foundation for developing general-purpose expression simplifiers. We have 
extended the beta-v reduction rule by adding rearrangememt rules that substan- 
tially increase the simplification power. These rules remain valid for a wide range of 
extensions of the lambda calculus by primitive operations to permit embedding of 
traditional programming languages. We have seen that there are trade-offs between 
maintaining confluent systems and increasing simplification power. What remains 
to be done is to work out a variety of substantial examples to test the practical ap- 
plicability of the various strategies and to determine what are the limiting factors 
in practical situations. In this section we discuss potential deficiencies and possible 
improvements of our analysis. 

6.1.    Approximating gen more accurately 

Although for some expressions, the computed gen' estimates gen exactly, there 
are other some expressions where the approximation is poor. For example if 

einit = X1 a. X2 times.let3 {tioice := X5f.X6x.f (fx)} 

let^-sgr := X' x.times x x} 

twice txoice sqr a 

then gen = {3 -+ 5,6; 5 -> 5; 4 -+ 7} but gen' = {3 -> 5,6; 4 -» 4,5,6,7; 5 -* 
4,5,6,7; 6'-» 4,5,6,7; 7 -> 4,5,6,7}. (Here 3 -> 5,6 abbreviates (3,5), (3,6), 
and so on.) Thus the set B cannot include any of 4,5,6,7 and statically-limited 
rewriting is unable to fully simplify the expression. 

One way to improve the simplifier is to more accurately approximate gen. 
This can be done systematically as follows. For a given expression, define relations 
xdoubler(p, /, a), xget(p, /, a\, c, a2), and xcanbring(p, /, a\, a2 ) which, unlike their 
finite counterparts, completely describe the rewrite history and location where the 
relationship occurs. A set of rules can be given which define those relations simul- 
taneously by induction on p. The finite (though perhaps ^incomputable) relation 
gen can be defined exactly in terms of these three potentially infinite relations. 

To approximate gen, we choose a function / assigning each pair (p, /) in Rseq x 
Loc a representation 5 from a finite set S. We then define finite but not necessar- 
ily computable relations ydoubler(,s, a), yget(s, ci\, c, «2), and ycanbring(s, ci\, 02) 
such that the tuple ($, a) is in ydoubler just if (p, /, «j, a2) is in xdoubler for some 
p, / such that /(p, /) = 5, and likewise for yget and ycanbring. Finally, we apply / 
to the inductive rules defining xdoubler, xget and xcanbring to obtain rules defin- 
ing computable relations ydoubler', yget' and ycanbring' which are guaranteed 
to be supersets of ydoubler, yget and ycanbring. 
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The value s in a tuple (s,a) satisfying ydoubler is a partial history telling 
how node a becomes a doubler. In this paper we took S to be a one-element set, 
throwing away the history so that doubler could play the role of ydoubler (and 
similarly for get and canbring) By keeping more history information, it should be 
possible to approximate gen with arbitrary accuracy; the only drawback would be 
the increased cost of the calculation. This approach is similar the use of procedure 
strings and their abstractions in the inter-procedural analysis of Scheme programs 
[Harrison 1989]. 

6.2. Alternate non-standard interpretations 

gen is itself an approximation to the information contained in the xgen rela- 
tion. Forgetting the path along which one node generates another when computing 
generates cycles introduces ficticious cycles - it is possible that xgen(p, a, b) and 
xgen(g, 6, a) hold, but never along the same path. Note that this sort of loss of 
information is avoided by the dynamically-limited strategy. Thus, one could look 
for better approximations to xgen (that would enable statically-limited rewriting to 
subsume more of the simplifications allowed by dynamically-limited rewriting. In 
the example of the previous section, xgen has a cycle although all rewritings from 
the given initial expression terminate. Thus one might also look for an alternative 
non-standard interpretation corresponding to a different analysis of the cause of 
non- termination. 

6.3. Preserving context information 

We separated simplification from the continuation-passing transformation in 
order to simplify the basic transformation and to develop a generic simplifier that 
could be shared among a variety of program manipulation tools. Of course this 
means loss of information. For example a continuation-passing transformer can 
carry out beta reductions based on knowledge about whether the application came 
from the original program or was introduced by the transformation. This approach 
has been successfully used in developing a continuation-passing transformation pro- 
gram [Danvy, private communication]. 

We gained simplicity by considering only the language of the pure lambda cal- 
culus. Following [Landin 1966] we can represent (by adding primitive constants and 
syntactic sugar) a wide range of language features (block structure, loops, recursive 
definition, branching, assignment, goto, escape, labels, ...) without invalidating 
our reduction rules. In fact any set of rules that are valid in the lambda-c calcu- 
lus will have this property. Again we lose information in translating from a richer 
language to the lambda calculus and we may want to consider more refined simplifi- 
cation mechanisms based on richer languages. For example [Moggi 1989] treats let 
as a construct distinct from lambda-application and gives a normalizing system of 
let-reductions. The system includes the analog of beta-value reduction and many 
instances (but not all) of our rearrangement rules.   It also includes rules such as 
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let{x := e]x H-> e which are not derivable in our system. It will require further 
investigation to determine the relative merits of the two sets of rules (and other 
alternatives) as the basis of simplification systems. 

To improve the usefulness of a generic simplifier a language is needed for ex- 
pressing information such as that discussed above. One such language is the two- 
level lambda calculus [Nielson 1988]. Here there are two copies of each syntactic 
construct. The distinction can be interpreted as compile-time vs run-time or as ex- 
pressing binding time information [Jones et al. 1989]. To account for the wide range 
of information we need to express will require a more general annotation language. 

6.4.    Adding new rules 

In addition to extending the capabilities of a simplifier by increasing the in- 
formation and lambda rules available one may also wish to add constants to the 
language and add corresponding delta-rules. These might include rewriting rules for 
an abstract data type, rules for conditional expressions, rules for updating opera- 
tions [Mason and Talcott 1989a], or rules for control operations [Talcott 1989, 1990]. 
In general the combination of two or more terminating rewriting systems does not 
produce a terminating system. However, [Breazu-Tannen and Gallier 1989] studies 
combinations of algebraic term rewriting systems and polymorphic lambda term 
rewriting and shows that properties such as strong normalization and confluence 
are preserved for a number of combinations. 
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